

Machine Learning for People Gus Lipkin 2023-08-25

Agenda

- Setting the Stage
- Preview the Data
- Create Some Models
- Compare Results and Efficacy
- Thinking Beyond
- Summing Up

How can I create a model that is easy to use and understand?

Setting the Stage

My Old Car

How many miles do I have remaining?

The Instrument Cluster

My Google Form

How man
Your answ
Price per
Your answ
Is the ligh
O True
False
Fuel tank
Choose

Gas Tank Choose -.25 Distance traveled * 0 Your answer .25 .5 ny gallons? * .75 1 /er 1.25 1.5 gallon * 1.75 2 /er 2.25 2.5 ht on? * 2.75 3 3.25 3.5 3.75 gauge level * 4 \mathbf{T}

Taking a Look at the Data

Timestamp	Gallons	PricePerGallon	Light	GaugeLevel	Distance
2020-11-25 11:54:15	10.000	\$1.779	FALSE	1.25	256.8
2020-11-25 11:54:51	8.986	\$1.999	FALSE	1.5	255.1
2020-11-25 11:55:30	8.530	\$1.839	FALSE	1.75	233.4
2020-11-25 11:56:09	10.126	\$1.679	FALSE	1.25	253.8
2020-11-25 11:57:15	6.085	\$1.739	FALSE	2.75	143.7
2020-12-12 06:43:23	12.689	\$1.779	TRUE	0.25	231.2

Computed Columns

TotalCost	GallonsRemaining	MPG	DollarsPerMile	ActualTankLevel	PercentError	MilesRemaining
\$17.790	5.900	25.680	\$0.069	1.484	15.784%	151.512
\$17.963	6.914	28.389	\$0.070	1.739	13.762%	196.279
\$15.687	7.370	27.362	\$0.067	1.854	5.614%	201.660
\$17.002	5.774	25.064	\$0.067	1.453	13.946%	144.721
\$10.582	9.815	23.615	\$0.074	2.469	11.373%	231.786
\$22.574	3.211	18.221	\$0.098	0.808	69.052%	58.506

Thinking About Machine Learning

Goals

- Don't run out of gas

- Be able to compute my miles remaining while driving Have an accurate estimate of miles remaining at any moment Share my findings in an easy to understand way

Models

Likely to work:

- Produces continuous numeric output
- Error can be calculated

Needs modification:

- Produces discrete numeric output
- Produces probabilistic output
- Error is harder to calculate

Model Metrics

- Estimated Miles Remaining
 - RMSE: Root Mean Square Error
 - How much of a buffer do I want?
- Percent Accuracy

ror want?

Neural Net

MilesRemaining ~ GaugeLevel + Light + Distance

Uses:

- All available variables
- 1000 epochs
- 10 hidden units

Pros:

- Very accurate
- Very cool to use

Cons:

- Not easy to do on the fly
- Difficult to communicate
- Computationally expensive

Simple Decision Tree

MilesRemaining ~ GaugeLevel + Light + Distance

Uses:

- All available variables
 - The model only actually uses GaugeLevel
- 1 tree

Pros:

- Easy to understand
- Easy to execute

Cons:

- Could be better
- Distance + GaugeLevel implies MPG
- A little bit of memorization

Random Forest

MilesRemaining ~ GaugeLevel + Light + Distance

Uses:

- All available variables
- 1000 trees

Pros:

- Very accurate
- Not computationally expensive
 Cons:
- Not easy to do on the fly
- Difficult to communicate

rf

Simple Linear Regression MilesRemaining ~ GaugeLevel

Uses:

GaugeLevel

Pros:

- Easy to understand
- Easy to execute

Cons:

- Could be better
- Distance + GaugeLevel implies MPG
- Requires some mental math

RMSE ≈ 14.31

Multiple Linear Regression

 $Miles Remaining \sim Gauge Level + Light + Distance$

Uses:

- All available variables
 Pros:
- Easy to communicate
- Very Accurate

Cons:

- Lots of mental math
- Not as easy to understand

MilesRemaining = 91.496 * GaugeLevel + 8.949 * Light + 0.367 * Distance - 56.936

 $\mathsf{RMSE} \approx 12.85$

Needs Modification

K-Means

MilesRemaining ~ GaugeLevel + Light + Distance

Uses:

- All variables
- 10 centers

Pros:

• Easy to execute

Cons:

- Lots of human factors in interpretation
- Difficult to choose a row
- Difficult to communicate
- No good measure of accuracy

Centroids

MilesRemaining	GaugeLevel	Light	Distar
47.267	-0.141	1.000	301.2
65.871	0.083	0.963	285.0
86.153	0.500	0.208	264.7
90.856	0.438	0.250	289.
116.424	0.908	0.000	247.
128.073	1.232	0.000	213.4
167.513	1.395	0.000	246.
181.677	1.929	0.000	173.4
227.054	2.672	0.000	128.9
276.483	3.133	0.000	98.

Logistic Regression MilesRemaining ~ GaugeLevel

Uses:

- GaugeLevel
- MilesRemaining converted to <= 50 miles remaining

Pros:

- Easy to understand
- Relatively accurate

Cons:

- Almost the same as the GaugeLevel
- You either run out of gas or you don't...
 - MilesRemaining is <= 50 at -.25 GaugeLevel

Model Comparisons

Error in Estimated Miles Remaining

Lower is better

Multiple Linear

Ease of Use

Higher is better

Simple Decision Tree Simple Linear Multiple Linear

Neural Net Random Forest

K-Means

Logistic

Ease of Communication

Higher is better

Simple Decision Tree Simple Linear Multiple Linear

Neural Net Random Forest

K-Means

Logistic

What did I use to estimate my miles remaining?

Meets K-Means Table

Centroids

GaugeLevel	Light	Distan
-0.141	1.000	301.2
0.083	0.963	285.0
0.500	0.208	264.7
0.438	0.250	289.5
0.908	0.000	247.14
1.232	0.000	213.4
1.395	0.000	246.1
1.929	0.000	173.4
2.672	0.000	128.9
3.133	0.000	98.5

Thinking Beyond the Gas Tank

Hospital Patient Readmissions

Wait Times at Disney World

Standardized Test Scores

Summing Up

- Accuracy is good
 - But so is explainability and executability
- Sometimes it's okay to sacrifice some accuracy

Machine Learning for People Gus Lipkin 2023-08-25